skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mukhopadhyay, Mainak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the 1 + 1 flat spacetime dynamics of a classical field configuration corresponding to an ensemble of sine-Gordon kinks and antikinks, semiclassically coupled to a quantum field. This coupling breaks the integrability of the sine-Gordon model resulting in the background’s decay into quantum radiation as kink-antikink pairs annihilate. We find evidence that, on average, the energy of the ensemble scales as t α with α < 1 and independent of the coupling strength or the mass of the quantum field. The generalization of this result to domain wall networks in higher spacetime dimensions could be relevant to particle production in the early universe. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We present a novel way to probe inelastic dark matter using cosmic-ray (CR) cooling in active galactic nuclei (AGNs). Dark matter (DM) in the vicinity of supermassive black holes may scatter off CRs, resulting in the rapid cooling of CRs for sufficiently large cross sections. This in turn can alter the high-energy neutrino and gamma-ray fluxes detected from these sources. We show that AGN cooling bounds obtained through the multimessenger data of NGC 1068 and TXS 0506 + 056 allows us to reach unprecedently large mass splittings for inelastic DM ( TeV ), orders of magnitude larger than those probed by direct detection experiments and DM capture in neutron stars. Furthermore, we demonstrate that cooling bounds from AGNs can probe thermal light DM with small mass splittings. This provides novel and complementary constraints in parts of a parameter space accessible solely by colliders and beam-dump experiments. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. ABSTRACT Recent radio observations and coincident neutrino detections suggest that some tidal disruption events (TDEs) exhibit late-time activities, relative to the optical emission peak, and these may be due to delayed outflows launched from the central supermassive black hole. We investigate the possibility that jets launched with a time delay of days to months, interact with a debris that may expand outwards. We discuss the effects of the time delay and expansion velocity on the outcomes of jet breakout and collimation. We find that a jet with an isotropic-equivalent luminosity of $$\lesssim 5 \times 10^{45}\, {\rm erg\, s}^{-1}$$ is likely to be choked for a delay time of $$\sim 3$$ months. We also study the observational signatures of such delayed choked jets. The jet–debris interaction preceding the breakout would lead to particle acceleration and the resulting synchrotron emission can be detected by current and near-future radio, optical and X-ray telescopes, and the expanding jet-driven debris could explain late-time radio emission. We discuss high-energy neutrino production in delayed choked jets, and the time delay can significantly alleviate the difficulty of the hidden jet scenario in explaining neutrino coincidences. 
    more » « less
  4. Abstract When a star undergoes core collapse, a vast amount of energy is released in a ∼10 s long burst of neutrinos of all species. Inverse beta decay in the star’s hydrogen envelope causes an electromagnetic cascade that ultimately results in a flare of gamma rays—an “echo” of the neutrino burst—at the characteristic energy of 0.511 MeV. We study the phenomenology and detectability of this flare. Its luminosity curve is characterized by a fast, seconds-long rise and an equally fast decline, with a minute- or hour-long plateau in between. For a near-Earth star (distanceD≲ 1 kpc) the echo will be observable at near future gamma-ray telescopes with an effective area of 103cm2or larger. Its observation will inform us on the envelope size and composition. In conjunction with the direct detection of the neutrino burst, it will also give information on the neutrino emission away from the line of sight and will enable tests of neutrino propagation effects between the stellar surface and Earth. 
    more » « less
  5. Abstract We discuss implications that can be obtained by searches for neutrinos from the brightest gamma-ray burst (GRB), GRB 221009A. We derive constraints on GRB model parameters such as the cosmic-ray loading factor and dissipation radius, taking into account both neutrino spectra and effective areas. The results are strong enough to constrain proton acceleration near the photosphere, and we find that the single burst limits are comparable to those from stacking analysis. Quasi-thermal neutrinos from subphotospheres and ultra-high-energy neutrinos from external shocks are not yet constrained. We show that GeV–TeV neutrinos originating from neutron collisions are detectable, and urge dedicated analysis on these neutrinos with DeepCore and IceCube as well as ORCA and KM3NeT. 
    more » « less